L, — LIMIT THEOREMS FOR MARKOV PROCESSES

BY
S. HOROWITZ*

ABSTRACT

A necessary and sufficient condition for convergence of Markov processes
L is given. As a consequence we get a theorem concerning the convergence
of Harris processes.

1. Definitions and notations. A Markov process is defined to be a quadruple
(X,X, m, P) where (X,X,m) is a finite measure space with a positive measure m
and where P is an operator on L,(m) satisfying (i) P is a contraction: “ p ll <1
(ii) P is positive: if 0 < u € L,(m) then uP = 0. The operator adjoint to P is defined
on L (m). Itwill also be denoted by P but will be written to the left of its variable.
Thus (uP,f> = <u, Pf> for ue Li(m), f € L ,(m).

A finitely additive set function will be called a charge.

The operator P acts on the space of the charges weaker than m (the adjoint
space of L,(m)) in the following form:

L1) vP(f) = v(Pf), f€Lo(m)
The operator P is called ergodic if:

(1.2) Pl,=1,=m(A) =0 or m(A%=0
P is said to be conservative if:
o]
(1.3) m(d) >0= % P1(x)=co ae.
n=1

The charge v is said to be invariant under P if:

(1.4 VP =y
In particular if v is a measure it is called an invariant measure. Let v be invariant
(1.5 =y —y  then v*P=v*  and v P=v"~
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(see [2]) because vP=v" P—v P=(P)* ~(vP)” = v* =y~ thus v'P ="
but v*P(1) = v*(P1) £ v (1), and this implies v P=v*, and v P=7¥ .

Let P"=Q,+ R, where Q, is an integral operator with the kernel g,(x,y),
and if K is any integral operator such that 0 £ K £ R, then K = 0. The process
(X,=,m,P) is said to be a Harris process if it is ergodic and conservative and
Q, > 0 for some integer n (see [1] Chapter V).

2. L_-limit theorems

THEOREM 1. Let feL.(m), f is orthogonal to every invariant charge, i.e.
vP=v=>v(f)=0, ifand only if :

@.1) lim \ L vy

n—>w k=1

Proof. This condition is clearly necessary. Let us prove the sufficiency. Consider
the closure of the range of the operator I — P, (I — P)L(m), its orthogonal
complement is the set of the invariant charges. If f is orthogonalto the invariant
charges, then by the Hahn-Bannach Theorem, fe(I — P)L(m), so that there
exists a function g with “ f—g+ Pg |[ « < & Therefore:

il Erumser] ]} Se-ro] 5. del

ot

2 . .
but —H—gﬁui tends to zero and ¢ is arbitrary, hence
N o E Pk n-»oo
n =3

ReMArk. In [1] Chapter 1V, it is proved that if feL,(m) and there is a
sequence of integers {n;} such that

}: P™fe L (m) then lim "17 ké P “w =0.

n— o0
It is clear that this proposition follows from Theorem 1.

ToEOREM 2. Let (X, X, m, P) be a Harris process, let y be an invariant
measure, then for each & >0 there exists a set A with m(A°) <e so that for
every function f e L.(m) which is orthogonal to u and supp f < A, (for example:
f=15~ u(B)/u(A4) - 1,, B = A) we have:

2.2) 1im|[—- ZP" =0

n—* o0
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Proof. There is an integer k so that Q, >0, hence P* can be written a sum
P* =0 + R where ( is a positive integral operator with the bounded kernel
05 g(x,y) < K and R = P*—~ (. We have R1 5 1. There is no loss of generality
in assuming that P* is ergodic, because by theorem D Chapter V of [1] there
exists a minimal set W and an integer d so that X = W UPW U --- UP*"'w
and P°W = W, and hence P*' is ergodic for each j that jd + 1 =k, but
Qja+1 2 QP*T17*>0 and we can take instead of P*, the ergodic operator
P/4*1 1 et 1 be a measure invariant under R, and hence A = AR < AP¥ = > A = 1P*
but P* is ergodic and therefore it has at most one invariant measure, hence A = au
but pis eigenvalent to m and R1 # 1 because J1 # 0, hence pR(1) = u(R1) < p(),
a contradiction. Hence there exists no measure invariant under K, and by Corollary
2 of Theorem E Chapter IV of [1], for each ¢ > 0. There exists a set 4 with
m(A°) < & so that: ‘

(.2) lim ]\ Ly E*IA’ ~0.
vl M op=g o
Let v be a positive pure charge invariant under P, then v 2 v{. Let {B,} be a

decreasing sequence of sets so that n,,B,, =@, then

V(B = v f 40, )15 (9)m(dy) < Km(B) > 0

hence v( is a measure and therefore v = 0. So we have v = vP* = vR and this
inplies that if fe L(m) and suppf < 4 then v(f) =0 by (3.2) and Theorem 1.
Let fe L(m), orthogonal to u and suppf < A. Let v an invariant charge, by [2]
there is a decomposition v = v, + v, where v, is a measure and v, is a pure charge,
now vP =v P 4+ v,P and v P is a measure because P is defined on L,(m) hence
v, P £ v, which implies v,P = v,, and v,P = v,, but P is ergodic, hence v, = ayu
thus v,(f) =0, on the other hand suppf < 4 implies v,(f) =0 hence v(f) =0
and by Theorem 1 we have lim, || 1/n Xg - P*f | = 0.
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