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ABSTRACT 

A necessary and sufficient condition for convergence of Markov processes 
Loo is given. As a consequence we get a theorem concerning the convergence 
of Harris processes. 

1. Definitions and notations. A Markov  process is defined to be a quadruple  

(X, E, m, P) where (X, E, m) is a finite measure space with a positive measure m 

and where P is an operator  on Ll (m ) satisfying (i) P is a contrac t ion:  1[ P l[ < 1. 

(ii) P is posit ive: if  0 < u e L~(m) then uP > O. The opera tor  adjoint  to P is defined 

on L~o(m). It  will also be denoted by P but will be written to the left o f  its variable. 

Thus ( u P , f )  = (u,  P f )  for  u ~ Ll(m), f ~ Loo(m). 

A finitely additive set funct ion will be called a charge. 

The opera tor  P acts on the space o f  the charges weaker than m (the adjoint  

space o f  Loo(m)) in the fol lowing form:  

1.1) vP( f )  = v(Pf) ,  f ~ Loo(m) 

The operator  P is called ergodic if: 

(1.2) P1A = 1 a => re(A) = 0 or  m(A ~) = 0 

P is said to be conservative if: 

oo 

(1.3) m(A) > 0 :~ E P"14(x) = oo a.e. 
n = l  

The charge v is said to be invariant under  P if: 

(1.4) ve  = v 

In  particular if  v is a measure it is called an invariant measure. Let v be invariant  

(1.5) v = v + - v -  then v+P = v + and v - P  = v -  
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(see [2]) because vP = v + P - v P = (vP) + - ( v P ) -  = v + - v -  thus v+P >__ v + 

but v+P(1)=  v+(P1)<  v+(1), and this implies v+P = v +, and 9 P = ~ . 

Let P"  = Qn + R~ where Q~ is an integral operator with the kernel q~(x,y), 

and if K is any integral operator such that 0 < K < R~ then K = 0. The process 

(X,E ,m,P)  is said to be a Harris process if it is ergodic and conservative and 

Qn > 0 for some integer n (see [1] Chapter V). 

2. L~-iimit theorems 

THEOREM 1. Let f e Loo(m),f is orthogonal to every invariant charge, i.e. 

vP = v :~ v( f )  = O, if  and only if  : 

n 

n ~ O O  n k = 

Proof. This condition is clearly necessary. Let us prove the sufficiency. Consider 

the closure of  the range of  the operator I -  P, ( I -  P)L~(m), its orthogonal 

complement is the set of  the invariant charges. If  f is orthogonal to the invariant 

charges, then by the Hahn-Bannach Theorem, f ~ ( I -  P)Loo(m), so that there 

exists a function g with IIS- g + Pgll  < Therefore: 

L 2p flt <_ p k ( f _  g + -t- ~ p k ( g _  eg)  -<e + 211g[l°° 
n k = l  oo k =  k = l  oo n 

211gtl  but tends to zero and e is arbitrary, hence 
n 

In k==~l P~f  ~o n~--L~ 0" 

REMARK. In [1] Chapter IV, it is proved that if feLoo(m) and there is a 

sequence of integers {n~} such that 

i = 1  n~ OO k oo 

It is clear that this proposition follows from Theorem 1. 

THEOREM 2. Let (X, E, m, P) be a Harris process, let # be an invariant 

measure, then for each e > 0 there exists a set A with m(A c) < n so that for 

every function f e Loo(m) which is orthogonal to p and supp f c A, (for example: 

f =  1 s - #(B)]p(A) " la, B = A) we have: 

(2.2) lim --1 ~ p k f ]  = 0  
n ~ O O  n k = l  oa 
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Proof. There is an integer k so that Qk > 0, hence pk can  be written a sum 

pk = {~ + ~ where ~ is a positive integral operator with the bounded kernel 

0 ~ q(x, y) < K and /~  = p k  ~.  We have J~ 1 # 1. There is no loss of  generality 

in assuming that P~ is ergodic, because by theorem D Chapter V of  [1] there 

exists a minimal set W and an integer d so that X =  W U P W U  ... UPa- Iw  

and PdW= W, and hence pjd+l is ergodic for each j that j d +  1 > k ,  but 

Qjd+l----> QR Pjd+l-k> 0 and we can take instead of  pk, the ergodic operator 

pSd+ 1. Let 2 be a measure invariant under/~, and hence 2 = 2R < 2P k ~ > 2 = 2P k 

but pk is ergodic and therefore it has at most one invariant measure, hence 2 = ~kt 

but # is eigenvalent to m and/~1 # 1 because Q1 # 0, hence #/~(1) = #(R1) < p(1), 

a contradiction. Hence there exists no measure invariant under/~, and by Corollary 

2 of Theorem E Chapter IV of  [1], for each e > 0. There exists a set A with 

m(A c) < e so that: 

lira --1 ~ ' l x [  =0. (3.2) 
n--*oo !1 k--I  Ioo 

Let v be a positive pure charge invariant under P, then v ~ v Q. Let {B,} be a 

decreasing sequence of sets so that AnBn = ¢, then 

= v f •(x, y)la.(y)m(dy) < KIn(B,,) v~( Bn) 0 

hence v~. is a measure and therefore vO = 0. So we have v = v/# = v~ and this 

inplies that if f e  L~o(rn) and supp f  c A then v(f) = 0 by (3.2) and Theorem 1. 

Let f ~  Loo(m), orthogonal to # and supp f  ~ A. Let v an invariant charge, by I-2] 

there is a decomposition v = v I + v 2 where vt is a measure and v2 is a pure charge, 

now vP = vtP + v2P and riP is a measure because P is defined on Ll(m ) hence 

vxP < v I which implies vtP = vt, and v2P = v 2, but P is ergodic, hence v I = a~ 

thus v t ( f )=  0, on the other hand s u p p f c  A implies v 2 ( f ) =  0 hence v ( f ) =  0 

and by Theorem 1 we have lim,_.~o II 1In ~,~k~-I  flloo = o. 
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